

光纤气体激光光源研究进展及展望(II): 基于粒子数反转

王泽锋^{1,2,3*},周智越¹,崔宇龙¹,黄威¹,李智贤¹,李昊¹

¹国防科技大学前沿交叉学科学院,湖南 长沙 410073; ²脉冲功率激光技术国家重点实验室,湖南 长沙 410073; ³高能激光技术湖南省重点实验室,湖南 长沙 410073

摘要 粒子数反转和受激拉曼散射是实现光纤气体激光器输出的最常见的两种基本原理。与光纤气体拉曼激光 光源不同,基于粒子数反转原理的光纤气体激光器是通过气体分子振转能级的本征吸收跃迁实现激光输出。由于 绝大多数气体分子的振转能级对应的激射跃迁谱线都在中红外波段,这种激光器的输出波长基本都在中红外波 段。简要分析了基于粒子数反转原理的光纤气体激光器在产生中红外波段激光方面的优势,重点回顾了其发展历 史与研究现状,并对下一步的发展趋势进行了展望。

关键词 激光器;红外和远红外激光器;分子气体激光器;空芯光纤

中图分类号 TN24 **文献标志码** A

doi: 10.3788/CJL202148.0401009

1 引 言

基于空芯光纤(HCF)的气体激光器是随着空 芯光纤的出现而发展起来的一类新型激光光源,它 结合了传统气体激光器和光纤激光器的许多优 点^[1],近年来得到了广泛的关注^[1-21]。根据工作机 理,光纤气体激光器可分为两类:一类是基于分子振 转能级之间的本征吸收实现粒子数反转^[1-14];另一 类是基于气体分子的受激拉曼散射(SRS)效 应^[15-23]。相比于基于 SRS 效应的工作机理,基于气 体分子振转能级的本征吸收实现粒子数反转所需的 泵浦阈值功率低得多,更容易实现连续激光输出。 由于绝大多数气体分子的振转能级激射跃迁对应的 波长都在中红外波段,因此基于粒子数反转的光纤 气体激光器基本都工作在中红外波段,如图 1 所示。

中红外激光波长位于大气窗口,同时也涵盖了 大多数分子的振动吸收峰对应的波长,因此中红外 激光在军事、生物医疗、安检及大气通信等领域有重 要的应用,一直以来都是国内外研究的热点。产生 中红外激光的方式有很多,总体上可分为两大类:一 类是利用增益介质的激射直接产生(线性方 法)^[24-29]:另一类是利用非线性光学效应产生^[30]。 前者包括了固体激光器、半导体量子级联激光器、自 由电子激光器、气体激光器和掺杂光纤激光器等,后 者主要包括光学参量振荡器(OPO)、光学参量放大 器(OPA)、光学倍频激光器(CO2激光器倍频)等。 其中,基于掺稀土离子光纤的中红外激光器由于光 束质量好、稳定性高、转换效率高等优点,最有希望 实现便携、稳定、高效的中红外激光输出[31],是国内 外关注的重点。但是,传统光纤激光器受限于受激 拉曼散射、受激布里渊散射、热透镜效应等因素,可 达到的输出激光功率上限(<100 kW)远低于气体 激光器(>1 MW)。此外,最常见的光纤材料---硅酸盐玻璃的声子能量高达 1100 cm⁻¹,对于波长 大于 2.2 µm 的激光有很强的吸收,这导致其损耗 变得非常大[32]。中红外光纤激光器一般采用具有

收稿日期: 2020-11-16; 修回日期: 2020-12-07; 录用日期: 2020-12-21

基金项目:国家自然科学基金面上项目(11974427,12004431)、湖南省自然科学基金杰出青年科学基金项目(2019JJ20023)、脉冲功率激光国家重点实验室主任基金项目(SKL-2020-ZR05)

^{*} E-mail: zefengwang_nudt@163.com

更宽传输带的氟化物玻璃、碲化物玻璃和硫系玻璃 光纤,但是目前它们的拉制工艺远没有达到硅酸盐 玻璃光纤的水平,同时还存在材料昂贵、化学稳定性 差、强度低、高功率输出受限等不足^[32]。由于在长 波段泵浦光子能量和产生激光光子能量之间的量子 亏损增加,掺杂光纤激光器连续输出的最大功率随 着发射波长的增加呈指数下降[31]。此外,由于用于 产生中红外激光的稀土材料种类较少,主要包括铒、 钬、铥和镝等几种,这极大限制了激光输出波长的拓 展,到目前为止,通过在室温下进行掺杂实现的中红 外光纤激光输出的最长波长为 3.92 µm,输出功率 约为 200 mW^[33]。气体激光器是实现中红外输出 的一条有效途径,但是传统气体激光器系统庞大笨 重,而且受气体腔作用距离的限制,激光效率较低。 空芯光纤(HCF)的出现为光与气体的相互作用提 供了一个理想的环境,大大促进了气体激光器的快 速发展,同时为解决传统光纤激光器在功率提升、波 长拓展等方面的技术瓶颈提供了一条非常有潜力的 解决途径。在空芯光纤中,光场边缘与包层的玻璃 材料少量重叠,而且其光场强度比中间空芯区域至 少小一个数量级^[1],这使得激光对玻璃材料的损伤 阈值大大提升,因此空芯光纤具有比传统实芯光纤 大得多的功率输出潜力。此外,空芯光纤中填充的 气体具有原子分子能级本征特性,无需额外的线宽 控制技术就可产生线宽非常窄(几百 MHz)的激光 输出,相比实芯光纤在高功率下保持激光线宽方面 有很大优势。

本文简要介绍了基于粒子数反转的光纤气体激 光器的技术特征、在产生中红外波段激光方面的优 势和基本工作原理,详细回顾了其发展历史与研究 现状,并对下一步发展趋势和需要解决的关键技术 进行了展望。

2 基本原理

2.1 增益气体及能级跃迁

与固体增益介质不同,气体分子的振转能级结构跃迁决定了其增益谱由一些窄带的吸收跃迁谱线组成,每一条吸收谱线的线宽由自然展宽、碰撞展宽和多普勒展宽共同决定,其中前两种展宽是均匀展宽,而多普勒展宽是非均匀展宽。在大多数实际情况下,由自发辐射引起的自然展宽可以忽略,碰撞展宽和多普勒展宽共同决定了气体分子的吸收线宽^[1]。对于低气压(100 Pa 量级及其以下)的增益 气体介质,气体分子的吸收线宽在几百 MHz 量级,

第 48 卷 第 4 期/2021 年 2 月/中国激光

因此泵浦激光的线宽不能太宽,至少要与气体分子 的吸收线宽在同一量级,才能确保有效的吸收。理 论上,只要使用的空芯光纤能够同时传输泵浦光和 产生的激光,传统气体激光器都可以在空芯光纤中 实现。此外,由于空芯光纤的作用距离更长、泵浦强 度更强,一些吸收发射截面很小的气体介质,也可以 在空芯光纤中实现激光输出,这使得光纤气体激光 器的增益介质选择更丰富,从而可以获得更多的激 光波长,如图1所示。

图 1 常见的光纤气体激光器和光纤激光器可产生的激光 波段对比^[1]

Fig. 1 Comparison of laser wavebands generated by typical fiber gas laser and fiber laser^[1]

利用 HITRAN 数据库^[34],表 1 给出了室温和 一个标准大气压的条件下中红外光纤气体激光器中 使用的一些常见增益气体介质及其不同的吸收泵浦 波段、对应产生的激光波段等参数,其中 v 表示气 体分子的振动态,双原子分子仅有一个振动态,非双 原子分子有多个振动态,用下标加以区分。光谱线 强度代表了对应谱带的最大光谱线强度,一定程度 上反映了使用不同气体实现激光输出的难易程度。

气体分子同时发生振动和转动,有不同的振动 态即振动能级,每一个振动态上的分子转动引起了 一系列转动态,用转动量子数J表示,相邻转动态 能级之差为 $2B(J+1)^{[35]}$,其中 B是某一振动态下 的转动常数,所以随着转动量子数的增加,相邻转动 态能级之差越来越大。下面以已经实现了中红外光 纤气体激光器输出的 C₂H₂和 CO₂ 气体为例,介绍 能级跃迁过程,如图 2 所示。当 C₂H₂分子被 P(*i*) 吸收线泵浦,其从 v_0 振动基态上 J = i的转动态跃 迁到上能级 $v_1 + v_3$ 振动态上 J'' = i - 1的转动态。 根据玻尔兹曼分布,在常温下除了 v_0 的振动基态, 其他振动态上的粒子数几乎为 0,上能级 $v_1 + v_3$ 振 动态和下能级 v_1 振动态形成了粒子数反转。根据 跃迁选择定律 $\Delta J = \pm 1(\Delta J = + 1$ 对应 R 支, $\Delta J = - 1$ 对应P支,其中 ΔJ 指的是上转动能级与

Gas gain medium		Pumping	band	Lasing band			
	$\lambda / \mu m$	Vibrational state transition	Spectral line intensity / (cm • molecule ⁻¹)	λ /µm	Vibrational state transition	Spectral line intensity / (cm • molecule ⁻¹)	
$C_2 H_2$	1.51-1.55	$v_0 \rightarrow v_1 + v_3$	1.34×10^{-20}	3.09-3.21	$v_1 + v_3 \rightarrow v_1$	—	
CO	1.56-1.65	$v = 0 \rightarrow v = 3$	2.17 \times 10 ⁻²³	2.32-2.51	$v = 3 \rightarrow v = 1$	3.17 \times 10 ⁻²⁵	
CO	2.29-2.52	$v = 0 \rightarrow v = 2$	3.47 \times 10 ⁻²¹	4.43-5.26	$v = 2 \rightarrow v = 1$	2.70 \times 10 ⁻²³	
CO_2	1.99-2.06	$v_0 \rightarrow 2v_1 + v_3$	1.32×10^{-21}	4.25-4.53	$2v_1 + v_3 \rightarrow 2v_1$	7.55 $\times 10^{-24}$	
$N_2 O$	1.98-2.02	$v_0 \rightarrow 3v_1 + 2v_2$	5.00×10^{-23}	2.65-2.71	$3v_1 + 2v_2 \rightarrow v_1$	5.97 $\times 10^{-24}$	
HI	1.53-1.95	$v = 0 \rightarrow v = 3$	3.22×10^{-22}	4.45-7.49	$v = 3 \rightarrow v = 2$	5.00 $\times 10^{-30}$	
HBr	1.94-2.72	$v = 0 \rightarrow v = 2$	8.30 \times 10 ⁻²²	3.69-6.59	$v = 2 \rightarrow v = 1$	5.63 $\times 10^{-25}$	

表1 中红外光纤气体激光器中常见气体介质及相关参数

Gas gain - medium		1 uniping	ballu	Lasing band			
	λ /µm	Vibrational state transition	Spectral line intensity / (cm • molecule ⁻¹)	λ /µm	Vibrational state transition	Spectral line intensity (cm • molecule ⁻¹)	
C_2H_2	1.51-1.55	$v_0 \rightarrow v_1 + v_3$	1.34×10^{-20}	3.09-3.21	$v_1 + v_3 \rightarrow v_1$	_	
CO	1.56-1.65	$v = 0 \rightarrow v = 3$	2.17 \times 10 ⁻²³	2.32-2.51	$v = 3 \rightarrow v = 1$	3.17×10^{-25}	
CO	2.29-2.52	$v = 0 \rightarrow v = 2$	3.47 $\times 10^{-21}$	4.43-5.26	$v = 2 \rightarrow v = 1$	2.70 \times 10 ⁻²³	
CO_2	1.99-2.06	$v_0 \rightarrow 2v_1 + v_3$	1.32×10^{-21}	4.25-4.53	$2v_1 + v_3 \rightarrow 2v_1$	7.55 $\times 10^{-24}$	
$N_2 O$	1.98-2.02	$v_0 \rightarrow 3v_1 + 2v_2$	5.00×10^{-23}	2.65-2.71	$3v_1 + 2v_2 \rightarrow v_1$	5.97 $\times 10^{-24}$	
HI	1.53-1.95	$v = 0 \rightarrow v = 3$	3.22×10^{-22}	4.45-7.49	$v = 3 \rightarrow v = 2$	5.00 $\times 10^{-30}$	
HBr	1.94-2.72	$v = 0 \rightarrow v = 2$	8.30 \times 10 ⁻²²	3.69-6.59	$v = 2 \rightarrow v = 1$	5.63 $\times 10^{-25}$	
(a)	=	:	(b)	=	:		
v_1+v_2	$_{3} J''=i-1$	· · · · · · · · · · · · · · · · · · ·	2v1+	$-2v_3 J''=i+1$	· · · · ·		

图 2 能级跃迁示意图。(a) C₂H₂ 分子 P 支吸收线泵浦的能级跃迁示意图;(b) CO₂ 分子 R 支吸收线泵浦的能级跃迁示意图 Fig. 2 Diagrams of energy level transition. (a) Diagram of energy level transition of $C_2 H_2$ molecules pumped with P branch absorption lines; (b) diagram of energy level transition of CO2 molecules pumped with R branch absorption lines

下转动能级之差),激发的上能级 $v_1 + v_2$ 振动态粒 子跃迁到 v_1 振动态上 J'=i 和 J'=i-2 的转动 态,分别发射出 R(i-2)和 P(i)两条激光跃迁谱 线,其中i-2和i表示跃迁下能级的转动量子数, 如图 2(a)所示。跃迁到 v1 振动态的粒子通过碰撞 引起的振动弛豫(非辐射跃迁)跃迁回 v₀振动基态。 而当 CO₂ 分子被 R(i)吸收线泵浦,其从 v₀ 振动基 态上J=i的转动态跃迁到上能级 $2v_1+v_3$ 振动态 上J''=i+1的转动态。上能级 $2v_1+v_3$ 振动态和 下能级 2v1 振动态形成了粒子数反转,激发的上能 级 $2v_1+v_3$ 振动态粒子跃迁到 $2v_1$ 振动态上 J'=i $\pi J' = i + 2$ 的转动态,分别发射出 R(i)和 P(i+2) 两条激光跃迁谱线,如图 2(b)所示。2v1 振动态上 的粒子同样通过碰撞引起的振动弛豫(非辐射跃迁) 跃迁回振动基态。

2.2 典型实验系统

目前,基于粒子数反转的光纤气体激光实验系 统基本都是采用图 3 所示的单程结构,该结构与典 型的光纤气体拉曼激光实验系统类似,泵浦光通过 反射镜、凸透镜等常见的光学元件耦合进入密封在

气体腔里的空芯光纤中,空芯光纤在泵浦光波段和 产生的激光波段都有较低的传输损耗,气体腔含有 在相应激光波段高透过率的输入或输出玻璃窗口, 通过气体腔可以对空芯光纤进行抽真空和充入所需 气压的增益气体介质。图 3 所示的实验系统未使用 反馈装置,是无谐振腔的单程结构。气体分子能级 跃迁的特殊性使其吸收线宽和激射线宽都非常窄, 再加上空芯光纤中泵浦光与气体的作用距离非常 长、提供的增益足够大,因此在空芯光纤中很容易对 自发辐射(ASE)产生的信号光进行受激放大,即实 现无谐振腔的激光器^[36]。由于输出光同时包含产 生的激光和残余的泵浦光,输出端会使用一个带通 滤波片来滤除残余的泵浦光。

基于粒子数反转的光纤气体激光器与基于受激 拉曼散射的光纤气体激光器虽然结构类似,但是由 于产生激光的原理不一样,实际上二者有很大区别。 一方面,两个系统的气压差别很大,受激拉曼散射一 般需要很高的气压(几 bar 至几十 bar, 1 bar = 100 kPa),而基于粒子数反转的激光器只需要低气 压(100Pa量级),这就要求系统为真空系统,而且

output window

Fig. 3 Diagram of fiber gas laser based on population inversion

基于粒子数反转的激光器对系统的气密性要求非常 高。另一方面,两个系统对泵浦源的要求也有很大 区别,基于受激拉曼散射的光纤气体激光器因受激 拉曼散射阈值很高,需要高峰值功率的泵浦源,但是 该系统对波长稳定性和线宽要求不是很高;对于基 于粒子数反转的光纤气体激光器,粒子数反转是通 过气体分子的本征吸收实现的,阈值比较低,但是该 系统要求泵浦波长要与吸收谱线中心精确匹配,而 且对波长稳定性和线宽要求非常高,以实现有效的 激光输出。此外,由于基于粒子数反转的光纤气体 激光输出波长大多位于中红外波段,而泵浦激光一 般都在近红外波段,这就要求空芯光纤的传输带跨 度比较大,特别要求在中红外波段要有较低的传输 损耗,因此空芯光纤的设计与制备难度更大。

3 研究进展

空芯光纤的出现为光与气体分子间的相互作用 提供了一个近乎理想的环境,大大促进了光纤气体 激光器的发展。空芯光纤纤芯区域可以填充不同的 气体增益介质,产生的激光波段范围十分丰富,相较 于掺杂实芯光纤的激光器,基于空芯光纤的激光器 能够有效地产生更长波段的中红外激光输出 (>4 μm)。同时,空芯光纤可以有效地将光约束在 微米尺度的纤芯中,具有极高的泵浦强度,同时提供 非常长的光与物质的相互作用距离,可大大降低激 光阈值,提高转换效率。基于空芯光纤的气体激光 器具有基于实芯光纤的激光器的结构紧凑、光束质 量好、转换效率高等特点,同时结合了气体激光器的 输出波长丰富、波长选择灵活、损伤阈值高、非线性 效应小等优点,是实现高功率、窄线宽、高光束质量 的中红外波段光纤激光输出的一种非常有潜力的技 术途径,具有广泛的应用前景。近年来,随着空芯光 纤的快速发展,特别是随着反共振空芯光纤的制备工 艺水平不断提升,基于乙炔、二氧化碳、一氧化碳、溴 化氢、一氧化二氮、碘化氢等气体的光纤气体激光器 均已有报道,下面按照增益气体介质类别进行介绍。

3.1 乙炔激光器

2011年, Jones 等^[2]首次报道了基于粒子数反 转的充乙炔的中红外光纤气体激光器。如图 4 所 示,实验中利用一个中心波长为 1.52 μm 的光学参 量振荡器(OPO)脉冲泵浦源(脉宽 5 ns),泵浦一段 充有低气压乙炔气体的 Kagome 空芯光纤,分别在 3.12 μm 和 3.16 μm 处产生了激光辐射。当气压 为 7 Torr(1 Torr≈133.32 Pa)时,获得了最高为 6 nJ 的脉冲激光能量,但系统的斜率效率只有百分 之几,这主要受限于空芯光纤在产生激光波段时的 传输损耗(20 dB/m)。文章指出,通过选择合适的 气体介质,并通过合理设计空芯光纤,可使泵浦波段 和激光波段的传输损耗都较低,从而可以进一步得 到其他技术难以获得的激光波段。

2012年,Jones等^[3]进一步研究了充乙炔、一氧 化碳等气体的 Kagome 空芯光纤气体激光器的输出 特性。利用 1.5 μm 波段 1 ns 脉宽的光学参量放大 器(OPA)泵浦气体介质,通过一阶振转泛频吸收实 现粒子数反转,该过程减小了空芯光纤的传输损耗。 基于乙炔的激光器的最大输出脉冲能量为 550 nJ, 转换效率约为 20%。同年,Nampoothiri 等^[1]发表 综述文章,详细分析了光纤气体激光器的优势,并通 过实验研究了不同纤芯直径的光纤(具有不同损耗) 和光纤长度对输出激光能量的影响,在 2 Torr 气压 获得了最高 27 %的光光转换效率,该值接近该类系 统的理论极限值的 33%。

图 4 OPO 泵浦充乙炔 Kagome 空芯光纤产生 3 μm 激光实验^[2]。(a)实验装置;(b)输出 3 μm 波段激光光谱 Fig. 4 3 μm laser generation from acetylene-filled Kagome HCF pumped by OPO^[2]. (a) Experimental setup; (b) output 3 μm laser spectrum

2014年,本课题组与巴斯大学合作,首次报道 了半导体泵浦的中红外光纤气体激光器^[4]。实验系 统如图 5 所示,利用电光调制、掺铒光纤放大的可调 谐窄线宽 1.5 μm 半导体激光器(重复频率 10 kHz, 脉宽 20 ns),泵浦一段充有低压乙炔气体的 10.5 m 长的无节点反共振空芯光纤,实现了有效的 3 μm 波 段中红外激光输出。在气压为 0.7 mbar、入射泵浦能 量为 4.2 μJ 时,得到了 0.8 μJ 的最大输出能量、30% 的光光转换效率和小于 50 nJ 的激光阈值。相比于 之前的 OPO 或 OPA 泵浦源,以窄线宽半导体激光 器为种子的光纤激光放大器泵浦源在实现高效紧凑 的中红外光纤气体激光器方面有很大优势。

图 5 可调谐半导体激光器泵浦充乙炔反共振空芯光纤单程实验^[4]。(a)实验装置图;(b)不同气压下输出激光能量随吸收的泵浦脉冲能量的变化

Fig. 5 Single-pass configuration experiment using acetylene-filled anti-resonant HCF pumped by tunable diode laser^[4].
 (a) Diagram of experimental setup; (b) laser pulse energy varying with absorbed pump pulse energy at different

pressure

2016, Hassan 等^[6]在上述工作的基础上,利用 一段空芯光纤构成反馈结构,首次实现了环形腔 3 μm 光纤乙炔气体激光器。如图 6 所示,该实验使 用了两种空芯光纤,一种是无节点型负曲率反共振 空芯光纤(1.53 μm 和 3.1 μm 光纤乙炔气体激光 器的传输损耗分别为 0.11 dB/m 和 0.1 dB/m),其 长度为 10 m,将乙炔气体作为增益光纤;另一种是 在 3 μm 波段具有更低传输损耗(3.1 μm 处为 0.025 dB/m)的冰淇淋型负曲率反共振空芯光纤, 将其置于空气中作为激光的反馈光纤,形成环形腔 结构。实验结果表明,腔结构极大地降低了激光阈

值,连续泵浦时激光阈值仅为 16 mW,激光斜率效 率为 6.7 %;脉冲泵浦时,为了实现同步,脉冲宽度 和重复频率需要与腔长匹配,当脉宽为 80 ns、重 复频率为 2.6 MHz 时,输出激光的最大斜率效率 为 8.8%。

2017年,Xu 等^[7]首次实现了瓦级单程光纤乙 炔气体激光器的连续输出,实验系统和结果如图 7 所示。泵浦源是基于 10 W 量级的掺铒光纤放大器 的 1.5 μ m 半导体激光器,使用泵浦光波段和激光 波段损耗都较低的反共振空芯光纤(1.53 μ m、 3.12 μ m 和 3.16 μ m 处的测量损耗分别为 0.037 dB/m、

图 7 单程光纤乙炔气体连续激光输出实验^[7]。(a)实验装置图;(b)不同气压下输出激光功率随吸收的泵浦功率的变化 Fig. 7 Single-pass configuration experiment of fiber acetylene gas CW laser output^[7]. (a) Diagram of experimental setup; (b) output laser power as a function of absorbed pump power at different pressure

0.063 dB/m 和 0.069 dB/m),在 0.6 mbar 气压下 得到最高的连续输出功率为 1.12 W,斜率效率约 为 33%。此外,该实验详细研究了输出激光功率和 气压、光纤长度和泵浦光强度的关系,指出低损耗空 芯光纤是实现有效高功率激光输出的关键。

2017年, Dadashzadeh 等^[8]首次研究了光纤乙 炔气体激光器的输出激光光束质量。实验系统如 图 8 所示,利用 OPA 泵 浦充乙炔的 10.9 m Kagome 空芯光纤(1.53 μm 和 3.1 μm 的传输损耗 分别为 0.08 dB/m 和 1.13 dB/m),当气压为 9.8 Torr时获得的最大输出能量为 1.41 μJ,斜率 效率为 20%。实验结果表明,中红外光纤气体激光 器具有较好的光束质量,测量得到的最佳质量因子 (M²)均小于 1.4,其最佳值在 1.15 附近,这显示了 近衍射极限的光束质量。作者同时指出实验中斜率 效率与乙炔气压的关系不大,碰撞弛豫不是实验中 的输出激光性质的限制因素,更高的泵浦功率和气 压有利于输出激光功率的提升。

图 8 光纤乙炔气体激光器的输出光束质量测量实验^[8]。(a)实验装置;(b)不同输出脉冲能量下对应的 M² 值 Fig. 8 Experiment for measuring output beam quality of fiber acetylene gas laser^[8]. (a) Experimental setup; (b) M² value corresponding to different output pulse energy

2018年,Lane 等^[9] 对基于空芯光纤的光纤气体 激光器进行了理论分析,重点建立了数值仿真模型并 分析激光功率输出特性,并将仿真结果与之前 OPA 泵浦的实验结果^[8]进行了比较。该研究指出空芯光 纤损耗、分子间碰撞引起的能量转移能够显著地影响 激光阈值和输出激光功率,在短脉冲泵浦(ns 量级)的 情况下,分子与纤芯壁面的碰撞不如分子间的碰撞对 输出激光的影响大,但该影响在长脉冲或者连续激光 泵浦的情况下不可忽视。同年,本课题组报道了可调 谐的脉冲和连续波近瓦级光纤乙炔激光输出^[10],脉 冲情况下的平均功率为 0.3 W(单脉冲能量 为 0.6 μJ)、转换效率为 16%,连续波情况下的激光功率 为 0.77 W、转换效率为 13%。同时,本课题组通过实 (a) 验详细研究了泵浦功率和乙炔气压对中红外激光两 条谱线成分的占比的影响,这对于激光谱线的控制和 高功率下激光效率的提升有很好的指导意义。

3.2 二氧化碳激光器

2012年, Nampoothiri 等^[1]报道了基于镀银毛 细玻璃管的 4.3 μ m 二氧化碳激光器。实验系统如 图 9 所示,毛细管内径为 500 μ m,长度为 1.5 m,泵 浦源 OPO 的脉宽为 5 ns,最大输出能量为 1 mJ,泵 浦波 长 是 二 氧 化 碳 R(22) 泛 频 吸 收 线,即 2002.5 nm。在转动弛豫下,最终输出的激光波段 在 4.3 μ m 和 4.37 μ m 附近。在最佳气压 100 Torr 情况下,激光阈值为 40 μ J,最大输出能量为 100 μ J, 光光转换效率约为 20%。

图 9 OPO 泵浦充 CO2 镀银毛细管实验^[1]。(a)实验装置图;(b)输出光谱及能级跃迁原理

Fig. 9 Experiment of OPO pumping CO₂-filled silver plating capillary^[1]. (a) Diagram of experimental setup; (b) output spectrum and energy level transition principle

2019 年,本课题组报道了基于空芯光纤的二氧 化碳气体激光器^[13],首次实现了 4 μ m 以上连续波 光纤激光输出,实验系统与结果如图 10 所示。泵浦 源是一个自研的掺铥光纤放大的可调谐窄线宽 2 μ m 半导体激光器。空芯光纤是无节点型反共振空芯光 纤,在 2 μ m 和 4 μ m 波段都具有较低的传输损耗, 实验中使用的空芯光纤的长度是 5 m,光纤中充低 压(几百 Pa)二氧化碳气体,基于粒子数反转实现了 单程结构 4.3 μ m 光纤激光输出,这是已经报道的 常温下连续波光纤激光输出的最长波长。在最佳气 压 500 Pa 的情况下,激光阈值约为 100 mW,最大 输出功率约为 80 mW,激光斜率效率约为 9.3%。

3.3 溴化氢激光器

溴化氢(HBr)气体是传统气体激光器的一种重 要增益介质,主要用于产生4μm波段激光输出。 传统基于气体腔的 HBr 气体激光器的体积都比较 庞大,作用距离较短,可实现脉冲激光输出^[37-40]。 1994年,Miller等^[37]首次报道了光泵浦的 HBr 气 体激光器,泵浦源为 Nd:YAG 抽运的 2μm 脉冲 OPO 激光器,通过 P 支泛频吸收,基频跃迁产生 4 μm 的中红外激光输出。2004年, Kletecka 等^[38] 利用 1.34 μm 调 Q 的 Nd: YAG 固体激光器泵浦 HBr 气体, 通过级联跃迁产生了 4 μm 激光输出。 2009年, Botha 等^[39]利用 掺 铥 光 纤 泵 浦 的 Ho: YLF 激光作为泵浦源, 获得了单脉冲能量为 2.5 mJ 的 HBr 气体激光。2014年, Koen 等^[40]报 道了以 Ho: YLF 激光器为泵浦源的 HBr 气体激 光器, 并利用腔内闪耀光栅实现了从 3.87 μm 到 4.45 μm 一共 19个中红外波长的调谐输出, 在 4.133 μm 获得了 2.4 mJ 的单脉冲能量输出。

本课题组首次将 HBr 气体充入空芯光纤中,以 自行搭建的窄线宽可调谐 2 μ m 掺铥光纤放大器泵 浦充有低压 HBr 气体的 4.4 m 长反共振空芯光 纤^[14],实现了 4 μ m 波段的中红外激光输出,如 图 11 所示。当泵浦波长精确对准同位素 H⁷⁹Br 的 R(2)吸收线 1971.7 nm 时,获得了包括 R(2)激射 线(3977.2 nm)和 P(4)激射线(4165.3 nm)两条谱 线的激光输出,620 Pa 时最大输出功率为 125 mW, 光光转换效率约为 10%。HBr 气体分子的能级特 点使其成为实现宽范围4 μ m波段中红外激光输出

图 10 基于反共振空芯光纤的 CO₂ 激光器实验系统与结果^[13]。(a)实验装置图;(b)能级跃迁原理图;(c)输出光谱图; (d)输出 4 μm 功率与吸收泵浦功率关系

Fig. 10 Experimental setup and results of CO₂ laser based on anti-resonant HCFs^[13]. (a) Diagram of experimental setup;
(b) schematic diagram of energy level transition; (c) output spectrum; (d) output power at 4 μm varying with absorbed pump power

图 11 掺铥光纤放大器泵浦充 HBr 反共振空芯光纤实验^[14]。(a)实验装置图;(b)输出光谱及能级跃迁原理 Fig. 11 Experiment of thulium-doped fiber amplifier pumping HBr-filled anti-resonant HCF^[14]. (a) Diagram of experimental setup; (b) output spectrum and energy level transition principle

的有效途径,通过改善空芯光纤传输损耗谱、提高泵 浦光耦合效率、进一步优化光纤长度和气压,基于空 芯光纤的 HBr 气体激光转换效率和输出功率都有 望得到大幅提升。

3.4 其他气体激光器

除了上述典型气体,还有关于基于 HCN^[3]、 N₂O^[12]等气体的中红外光纤激光器和基于碘蒸 气^[5]的近红外光纤气体激光器的报道。2012年, Jones 等^[3]报道了基于充 HCN 气体的 Kagome 空 芯光纤的 3 μm 波段中红外激光实验,以纳秒 OPA 为泵浦源,Kagome 空芯光纤的长度为 45 cm,纤芯 直径为 85~94 μ m,在 8 Torr 气压时获得了 56 nJ 的最大输出能量。2019年,Aghbolagh等^[12]报道了 用 1.517 μ m 波段 OPO 泵浦 45 cm 长充有 N₂O 气 体的 Kagome 空芯光纤,产生了 4.6 μ m 波段的激 光,在 80 Torr 气压下得到的最大输出能量为 75 nJ,受空芯光纤传输损耗的限制,激光斜率效率 仅为 3%。2015年,Nampoothiri等^[5]报道了基于 充碘蒸气的 Kagome 空芯光纤的连续波 1.3 μ m 波 段 近红外激光器,如图12所示,泵浦源为532 nm

图 12 连续光泵浦碘蒸气光纤气体激光器实验系统与输出光谱^[5]。(a)实验装置;(b)输出激光光谱

Fig. 12 Experimental setup and output spectrum of CW light pumped I_2 vapor fiber gas laser^[5]. (a) Experimental setup; (b) output laser spectrum

Nd:Vanadate激光器,空芯光纤长度为20 cm,以两个凹透镜构成谐振腔,当碘蒸气压强为300 Torr、输出端凹面镜反射率为85%、输入功率为250 mW时,输出功率为8 mW,斜率效率约为4%。

除光泵浦光纤气体激光器外,2014 年 Bateman 等^[41]首次报道了电激励空芯光纤中稀有气体产生 3.11,3.37,3.51 μm 光辐射的现象,实验系统和结 果如图 13 所示。稀有气体为体积比为 5:1 的混合 氦气和氙气(He-Xe 气体,1.2 kPa),空芯光纤为芯 径为 120 μm 的 1 m 长无节点反共振空芯光纤,放 电电压可达 40 kV。

图 13 基于反共振空芯光纤的电激励 3 µm 充 He-Xe 气体的激光辐射实验^[41]。(a)实验装置图及不同光纤长度下的输出 信号;(b)输出激光光谱

Fig. 13 Experiments of 3 μ m laser radiation from electrically excited He-Xe gas based on anti-resonant HCF^[41]. (a) Diagram of experimental setup and output signals for different fiber lengths; (b) output laser spectrum

4 发展趋势

光纤气体激光器是激光技术领域的前沿课题, 为解决传统掺杂实芯光纤的激光器在功率提升、波 长拓展等方面的技术瓶颈提供了通用的解决途 径^[1]。近年来,随着空芯光纤特别是在中红外波段 具有较低传输损耗的反共振空芯光纤的制备工艺水 平的不断提升,光纤气体激光器得到了广泛关注,相 关研究相继在光学顶级期刊上得到报道,但是整体 发展水平还处在非常初级的阶段,还有许多基础物 理问题和关键技术需要突破,包括光纤气体激光器 理论模型、气体基础参数的测量、空芯光纤传输损耗 的进一步降低、空芯光纤与实芯光纤的高效高功率 耦合技术等。下面结合光纤气体激光器的发展现状 和将来的应用,对其发展趋势进行展望。

4.1 全光纤结构

全光纤结构是光纤气体激光器走向实际应用的 理想选择。但是,目前光纤气体激光器中的泵浦激 光基本都是通过空间光路泵耦合进入空芯光纤中, 典型结构如图 3 所示。这种空间耦合结构不稳定, 光路调节困难,容易受到外界环境干扰,从而导致耦 合效率下降。因此,全光纤结构的中红外光纤气体 激光器是下一步主要发展方向之一,其中空芯光纤 与实芯光纤的低损耗耦合与高稳定性封装是迫切需 要解决的关键问题。

空芯光纤的包层是由石英和空气孔交替叠加形成,传统熔接方法很容易导致包层结构的塌陷,引入 很大的插入损耗,尤其是包层结构简单、模场直径一般较大的反共振空芯光纤,损耗会更大。2005年, Benabid 等^[42]首次采用特殊的熔接装置成功制备了

低压 HCF 气体腔,但熔接过程破坏了 HCF 的微结 构,导致气体腔插入损耗高达 10 dB。Tuominen 等^[43]和 Cubillas 等^[44]分别通过 V 型槽在密封腔内 实现 HCF 与普通光纤间的对接耦合,构建了 HCF 低压气体腔,但是这种方法存在损耗大、稳定性差、 难以小型化等问题。2014年,Gao等^[45]对带隙型空 芯光子晶体光纤与普通单模光纤的熔接损耗进行了 理论分析和实验研究,通过引入一段高归一化频率 (V 值)的过渡光纤,得到的最低熔接损耗为 0.73 dB。2015 年, 郝军等^[46] 通过向空芯光纤中充 入 He 气,研究了其与单模光纤的熔接问题,实验中 空芯光子晶体光纤两端均熔接单模光纤,两个熔接 点总的损耗小于2 dB。2016年,Xie 等^[47]提出了将 单模光纤进行拉锥后插入带隙型 HCF 的耦合方 案,如图 14 所示,实验获得 87.8%的单端注入耦合 效率,该研究为实现反共振 HCF 与实芯光纤低损 耗耦合提供了新思路。

本课题组首次将拉锥耦合的思路引入反共振 HCF 与实芯光纤的耦合中,开展了详细的理论仿真 和实验研究^[48]。仿真结果表明,拉锥单模实芯光纤 与冰淇淋型和无节点型反共振 HCF 的最佳耦合效 率均大于 90%。实验中,当单模光纤 HI-1060 的锥 腰约为40 µm时,其与模场直径约为40 µm的冰淇 淋型反共振 HCF 在 1064 nm 的最大耦合效率约为 91.4%;当SMF-28光纤的锥腰为40 µm时,其与模 场直径约为 70 µm 的无节点反共振 HCF 在 1560 nm 的最大耦合效率约为 83.7%,结果如图 15 所示。在此基础上,本课题组还开展了双端拉锥耦 合的理论和实验研究^[49],结果表明从 HCF 到拉锥 实芯光纤的耦合不仅存在最佳锥腰,还存在最佳插 入位置,而且这种情况下的耦合效率要低于从拉锥 光纤到 HCF 的耦合效率。以单模光纤 SMF-28 与 纤芯直径约 46 μm 的冰淇淋型反共振 HCF 的耦合 为例,二者的最佳耦合效率的仿真值为 70.8%,实

第48卷第4期/2021年2月/中国激光

验测量值为 52.3%。通过将拉锥耦合技术应用到 光纤气体激光器中^[50-51],实现了泵浦光耦合输入端 的全光纤化,这为下一步实现全光纤结构的光纤气 体激光器打下了很好的基础;但是实现全光纤结构 的光纤气体激光器还需解决一些关键技术,主要包 括进一步优化拉锥参数和拉锥工艺、拉锥耦合处的 稳定性密封、高功率下的制冷封装、低压气体腔的制 备等。

- 图 15 拉锥光纤与反共振 HCF 的耦合效率随锥腰直径 的变化^[48]。(a)拉锥光纤 HI-1060 与冰淇淋型反 共振 HCF 在 1064 nm 的耦合效率随锥腰直径的 变化,插图为空芯光纤输出的近场;(b)拉锥 SMF-28 与无节点反共振 HCF 在 1568 nm 的耦合效率 随锥腰直径的变化
- Fig. 15 Coupling efficiency of tapered fiber and anti-resonant HCF varying with waist diameter^[48].
 (a) Coupling efficiency of tapered fiber HI-1060 and ice-cream anti-resonant HCF at 1064 nm varying with waist diameter. Inset is output near field from HCF; (b) coupling efficiency of tapered SMF-28 and node-less anti-resonant HCF at 1568 nm varying with waist diameter

4.2 高功率输出

实现高功率输出是中红外光纤气体激光器发展 的重要方向。相较于传统的实芯光纤,HCF中绝大 部分模场能量集中在中间空芯部分,激光模场与纤 芯区域玻璃材料的重叠面积非常小,因此理论上 HCF的损伤阈值比实芯光纤高得多,而且有更低的 非线性,在实现高功率输出方面有巨大的潜在优势。 但是,目前中红外光纤气体激光器的研究还处在初

始阶段,已报道的最高功率仅为瓦级。

2017年,Xu 等^[7]利用乙炔气体作为增益介质, 以基于掺铒光纤放大器的窄线宽半导体激光器为泵 浦源,使用在泵浦光波段和所产生的激光波段均具 有较低传输损耗的反共振 HCF,实现了目前中红外 光纤气体激光器的最高连续功率为 1.12 W 的输 出,转换效率有 33.2%。作者指出,实现高功率输 出的可能途径是使用具有低损耗的较长空芯光纤和 合适的窄线宽高功率泵浦源。同年,Dadashzadeh 等^[8]报道了中红外光纤气体激光器的最大单脉冲输 出能量为 1.41 μ J,斜率效率为 20%,他们还发现输 出功率的饱和现象不明显,并在比较大的气压范围 内,斜率效率与气压无关,这说明碰撞弛豫不是输出 能量的限制因素,更高的泵浦功率和气压有利于输 出功率的进一步提升。

高功率中红外光纤气体激光器具有重要的应用 价值和广泛的应用前景,是本课题组努力的方向,但 是研究中面临很大的技术挑战。下一步,要想实现 十瓦级甚至更高量级的激光功率输出,还需解决一 些重要理论问题和核心关键技术,主要包括高功率 下光纤气体激光器的运行机制和理论模型、高功率 窄线宽高波长稳定性光纤激光泵浦源研制、高功率 泵浦激光高效耦合技术、增益气体吸收谱线展宽技 术、高功率下的热管理技术等。

4.3 更丰富的激光波长

获得更丰富的激光波长也是光纤气体激光器未 来发展的重要方向。与实芯掺稀土离子光纤激光器 相比,光纤气体激光器的增益介质更换更为方便,而 且可更换的增益介质种类更多,对空芯光纤的结构 参数进行设计,使其能够同时低损耗地传输泵浦光 和所产生的激光,这样可以实现更多波长的激光输 出,特别是可实现传统光纤激光器不太容易实现的 中红外波段和紫外波段。目前,利用表1所示的各 种常见气体已经实现了 2~4 μ m 各波段的激光输 出,这大大丰富了光纤激光输出波长。下一步,通过 选择其他合适的气体,可以进一步丰富 2~5 μ m 范 围的输出激光波长。但是,目前的空芯光纤材料一 般都是石英玻璃,受石英材料吸收损耗的限制, 4.5 μ m 以上的传输损耗会越来越大,很难实现 5 μ m 以上物有效传输。若采用氟化物玻璃、氯 化物玻璃和硫系玻璃材料来制备空芯光纤,则可将 有效传输带进一步往长波长拓展,甚至可以拓展到 远红外波段。基于这些软玻璃空芯光纤有望实现更 长波长的中红外光纤气体激光器和远红外光纤气体 激光器。另一方面,光纤气体激光器在实现可见光 和紫外波段激光输出中也有一定的优势,尤其在紫 外波段,其光子暗化效应比实芯光纤要弱得多。在 可见光和紫外波段,可选择的增益介质非常多,包括 常见的稀有气体、各种卤化物、金属蒸气等。泵浦方 式不仅可以采用光泵浦,还可选择电激励方式。

5 结束语

基于粒子数反转的光纤气体激光器自 2011 年 首次被报道以来[2],因其在实现有效的中红外波段 光纤激光输出方面拥有潜在的巨大优势,受到了广 泛的关注。特别是近几年来,随着在中红外波段具 有较低传输损耗的反共振空芯光纤的快速发展,相 关研究报道越来越多,目前已经实现了基于表1所 示的所有常见气体的激光输出,代表性研究结果如 表 2 所示。与基于拉曼散射效应的光纤气体激光器 不同,基于分子振转能级吸收实现粒子数反转所需 的泵浦阈值功率低得多,更容易实现连续激光输出。 而且由于绝大多数气体分子的振转能级激射跃迁对 应的波长都在中红外波段,因此基于粒子数反转的 光纤气体激光器是实现常温运行的中红外光纤激光 输出的有效手段。但是,目前基于粒子数反转的光 纤气体激光器还处在非常初始的发展阶段,还有许 多基础物理问题和关键技术需要深入研究和解决, 包括光纤气体激光器的理论模型、气体基础参数的 测量、空芯光纤传输损耗的进一步降低、高功率泵浦 激光的高效耦合技术、低损耗高稳定性全光纤低压 气体腔的制备技术、高功率窄线宽高波长稳定性光 纤激光泵浦源研制、高功率泵浦激光高效耦合技术、 增益气体吸收谱线展宽技术、高功率下的热管理技 术等。若能逐步解决这些问题,光纤气体激光器将 是实现高功率中红外光纤激光输出的有效手段,可 以解决传统中红外光纤激光器在功率提升和波长拓 展方面遇到的技术瓶颈。此外,远红外、可见光和紫 外波段也是将来光纤气体激光器波长拓展的重要 方向。

Pump source	Pump wavelength /nm	Gas gain modium	Laser	Maximum laser	Efficiency / %	Ref. No.
	wavelengtii / iiiii	mearum	wavelength / µm	energy of power		
OPO	1521	$C_2 H_2$	3.12, 3.16	6 nJ	1	[2]
OPA	1532.8	$C_2 H_2$	3.11, 3.17	550 nJ	20	[3]
OPA	1541.3	HCN	3.09, 3.15	56 nJ	0.02	[3]
OPO	2002.5	CO_2	4.30, 4.37	100 µJ	20	[3]
OPO	1521	$C_2 H_2$	3.12, 3.16	600 nJ	27	[1]
Diode laser	1530	$C_2 H_2$	3.12, 3.16	0.8 µJ	30	[4]
Nd : Vanadate	532	I_2	1.31, 1.33	8 mW	4	[5]
Diode laser	1530	$C_2 H_2$	3.08-3.18	2.5 mW	6.7	[6]
Diode laser	1530	$C_2 H_2$	3.12, 3.16	1.12 W	33.2	[7]
OPA	1530	$C_2 H_2$	3.11, 3.17	1.41 µJ	20	[8]
Diode laser	1530-1535	$C_2 H_2$	3.09-3.21	0.6 μJ 0.77 W (CW)	16 13	[10]
TDFA	2000.6	CO_2	4.30, 4.39	80 mW	19.3	[13]
OPO	1517	$N_2 O$	4.59, 4.66	150 nJ	9	[12]
Electrodes		He:Xe (5:1)	3.11, 3.37, 3.51			[41]

表 2 基于粒子数反转的光纤气体激光器研究进展

Table 2 Research progress of fiber gas lasers based on population inversion

参考文献

- [1] Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review [J]. Optical Materials Express, 2012, 2(7): 948-961.
- [2] Jones A M, Nampoothiri A V, Ratanavis A, et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion [J]. Optics Express, 2011, 19(3): 2309-2316.
- [3] Jones A M, Fourcade-Dutin C, Mao C, et al. Characterization of mid-infrared emissions from C₂H₂, CO, CO₂, and HCN-filled hollow fiber lasers
 [J]. Proceedings of SPIE, 2012, 8237: 82373Y.
- [4] Wang Z, Belardi W, Yu F, et al. Efficient diodepumped mid-infrared emission from acetylene-filled hollow-core fiber[J]. Optics Express, 2014, 22(18): 21872-21878.
- [5] Nampoothiri A V V, Debord B, Alharbi M, et al. CW hollow-core optically pumped I₂ fiber gas laser
 [J]. Optics Letters, 2015, 40(4): 605-608.
- [6] Hassan M R A, Yu F, Wadsworth W J, et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 2016, 3(3): 218-221.
- [7] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollowcore fiber gas laser source[J]. Optics Letters, 2017, 42(20): 4055-4058.

- [8] Dadashzadeh N, Thirugnanasambandam M P, Kushan Weerasinghe H W, et al. Near diffractionlimited performance of an OPA pumped acetylenefilled hollow-core fiber laser in the mid-IR[J]. Optics Express, 2017, 25(12): 13351-13358.
- [9] Lane R A, Madden T J. Numerical investigation of pulsed gas amplifiers operating in hollow-core optical fibers[J]. Optics Express, 2018, 26(12): 15693-15704.
- [10] Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers [J]. Optics Express, 2018, 26(15): 19144-19153.
- [11] Cui Y L, Zhou Z Y, Huang W, et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers
 [J]. Acta Optica Sinica, 2019, 39(12): 1214002.
 崔宇龙,周智越,黄威,等.基于反共振空芯光纤的 4.3 μm 二氧化碳激光器[J].光学学报, 2019, 39 (12): 1214002.
- [12] Aghbolagh F B A, Nampoothiri V, Debord B, et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm
 [J]. Optics Letters, 2019, 44(2): 383-386.
- [13] Cui Y L, Huang W, Wang Z F, et al. 4.3 μm fiber laser in CO₂-filled hollow-core silica fibers [J]. Optica, 2019, 6(8): 951-954.
- [14] Zhou Z Y, Li H, Cui Y L, et al. Optically pumped
 4 μm CW HBr gas laser based on hollow-core fiber
 [J]. Acta Optica Sinica, 2020, 40(16): 1614001.

周智越, 李昊, 崔宇龙, 等. 基于空芯光纤的光泵浦 4 μm 连续波 HBr 气体激光器[J]. 光学学报, 2020, 40(16): 1614001.

- [15] Wang Z F, Yu F, Wadsworth W J, et al. Efficient
 1.9 μm emission in H₂-filled hollow core fiber by pure stimulated vibrational Raman scattering [J].
 Laser Physics Letters, 2014, 11(10): 105807.
- [16] Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 µm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth [J]. Optics Letters, 2016, 41(21): 5118-5121.
- [17] Li Z X, Huang W, Cui Y L, et al. Efficient midinfrared cascade Raman source in methane-filled hollow-core fibers operating at 28 µm [J]. Optics Letters, 2018, 43(19): 4671-4674.
- [18] Wang Z F, Yu F, Wadsworth W, et al. Single-pass high-gain 1.9 µm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.
 王泽锋,于飞, Wadsworth William,等.单程高增益 1.9 µm 光纤气体拉曼激光器[J].光学学报, 2014, 34(8): 0814004.
- [19] Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36 (5): 0506002.
 陈育斌,顾博,王泽锋,等. 1.5 μm 光纤气体拉曼激 光光源[J]. 光学学报, 2016, 36(5): 0506002.
- [20] Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H₂-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 2016, 36(8): 0806005.

顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联 SRS 的红绿蓝色激光[J]. 光学学报, 2016, 36(8): 0806005.

- [21] Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier [J]. Acta Optica Sinica, 2017, 37(5): 0514002.
 陈育斌, 王泽锋, 顾博, 等. 1.5 μm 光纤乙烷气体拉 曼激光放大器 [J].光学学报, 2017, 37(5): 0514002.
- [22] Huang W, Cui Y L, Li Z X, et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001.
 黄威,崔宇龙,李智贤,等.基于空芯光纤中氢气受 激拉曼散射的 1.7 μm 光纤激光光源研究[J].光学 学报, 2020, 40(5): 0514001.
- [23] Cui Y L, Huang W, Zhou Z Y, et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber
 [J]. Acta Optica Sinica, 2020, 40(2): 0214001.
 崔宇龙,黄威,周智越,等.基于空芯光子晶体光纤

的单程高效氘气转动拉曼激光光源[J].光学学报, 2020,40(2):0214001.

- [24] Bandyopadhyay N, Bai Y, Gokden B, et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~
 3.76 μm [J]. Applied Physics Letters, 2010, 97(13): 131117.
- [25] Liu J R, Tang Y, Huang K, et al. Electrically initiated repetitive-pulsed non-chain HF lasers [J]. Optics and Precision Engineering, 2011, 19(2): 360-366.
 刘晶儒, 唐影, 黄珂, 等. 电激励重复频率非链式 HF 激光器[J]. 光学 精密工程, 2011, 19(2): 360-366.
- [26] Yu Q X, Li H, Lin J X. A CO-overtone laser based photoacoustic spectrometer for trace gas detection
 [J]. Journal of Optoelectronicslaser, 2003, 14(7): 669-671.
 于清旭,李红,林钧岫.基于泛频 CO 激光器的微量
 气体光声光谱仪[J].光电子·激光, 2003, 14(7): 669-671.
- [27] Adamovich I V, Goshe M, Lempert W R, et al. Continuous-wave electrically excited carbon monoxide laser operating on first overtone infrared bands: 2.5to 4. 0-microns kinetic modeling and design [J]. Proceedings of SPIE, 2004, 5448: 322-343.
- [28] Faucher D, Bernier M, Androz G, et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm [J]. Optics Letters, 2011, 36(7): 1104-1106.
- [29] Dinerman B J, Moulton P F. 3-µm CW laser operations in erbium-doped YSGG, GGG, and YAG [J]. Optics Letters, 1994, 19(15): 1143-1145.
- [30] Lippert E, Fonnum H, Arisholm G, et al. A 22watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator [J]. Optics Express, 2010, 18(25): 26475-26483.
- [31] Jackson S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nature Photonics, 2012, 6(7): 423-431.
- [32] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers [J]. Laser Physics, 2012, 22(11): 1744-1751.
- [33] Maes F, Fortin V, Poulain S, et al. Roomtemperature fiber laser at 3. 92 μm [J]. Optica, 2018, 5(7): 761-764.
- [34] HITRAN spectroscopic database [EB/OL]. [2020-03-15]. http://hitran.iao.ru/molecule.
- [35] Banwell C N. Fundamentals of molecular spectroscopy [M]. London: McGraw-Hill Book Company, 1972.
- [36] Zhou B K, Gao Y Z, Chen T D, et al. Laser

第 48 卷 第 4 期/2021 年 2 月/中国激光

principle [M]. 6 ed. Beijing: National Defense Industry Press, 2009: 201-204. 周炳琨,高以智,陈倜嵘,等.激光原理[M].6版. 北京:国防工业出版社, 2009: 201-204.

- [37] Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser [J]. IEEE Journal of Quantum Electronics, 1994, 30 (10): 2395-2400.
- [38] Kletecka C S, Campbell N, Jones C R, et al. Cascade lasing of molecular HBr in the four micron region pumped by a Nd : YAG laser [J]. IEEE Journal of Quantum Electronics, 2004, 40 (10): 1471-1477.
- [39] Botha L R, Bollig C, Esser M J D, et al. Ho: YLF pumped HBr laser [J]. Optics Express, 2009, 17 (22): 20615-20622.
- [40] Koen W, Jacobs C, Bollig C, et al. Optically pumped tunable HBr laser in the mid-infrared region [J]. Optics Letters, 2014, 39(12): 3563-3566.
- [41] Bateman S A, Belardi W, Yu F, et al. Gain from helium-xenon discharges in hollow optical fibres at 3 to 3.5 μm [C]// CLEO: Science and Innovations 2014, San Jose, California: Optical Society of America, 2014: STh5c.
- [42] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollowcore photonic crystal fibres [J]. Nature, 2005, 434 (7032): 488-491.
- [43] Tuominen J, Ritari T, Ludvigsen H, et al. Gas filled photonic bandgap fibers as wavelength references[J].
 Optics Communications, 2005, 255(4/5/6): 272-277.
- [44] Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber [J].

第48卷第4期/2021年2月/中国激光

Optics Express, 2008, 16(6): 3976-3985.

- [45] Gao S F, Wang Y Y, Tian C P, et al. Splice loss optimization of a photonic bandgap fiber via a high Vnumber fiber [J]. IEEE Photonics Technology Letters, 2014, 26(21): 2134-2137.
- [46] Hao J, Liu Y, Li W C, et al. Preparation of all-fiber HC-PCF low-pressure gas cell by the He-assisted fusion splicing technique [J]. Acta Optica Sinica, 2015, 35(9): 0906001.
 郝军,刘晔,李文彩,等. He 气辅助熔接的全光纤 型 HC-PCF 低压气体腔的制备[J].光学学报, 2015, 35(9): 0906001.
- [47] Xie S, Pennetta R, Russell P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber [J]. Optica, 2016, 3(3): 277-282.
- [48] Huang W, Huang W, Huang W, et al. Low-loss coupling from single-mode solid-core fibers to antiresonant hollow-core fibers by fiber tapering technique[J]. Optics Express, 2019, 27(26): 37111-37121.
- [49] Li H, Huang W, Wang Z F, et al. Double-end lowloss coupling of anti-resonant hollow-core fibers with solid-core single-mode fibers by tapering technique [J]. Laser Physics Letters, 2020, 17(10): 105101.
- [50] Huang W, Cui Y L, Zhou Z Y, et al. Towards allfiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers[J]. Chinese Optics Letters, 2019, 17(9): 091402.
- [51] Cui Y L, Zhou Z Y, Huang W, et al. Quasi-all-fiber structure CW mid-infrared laser emission from gasfilled hollow-core silica fibers [J]. Optics & Laser Technology, 2020, 121: 105794.

Research Progress and Prospect of Fiber Gas Laser Sources (II): Based on Population Inversion

Wang Zefeng^{1,2,3*}, Zhou Zhiyue¹, Cui Yulong¹, Huang Wei¹, Li Zhixian¹, Li Hao¹

¹ College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China;

²State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China; ³Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China

Abstract

Significance A fiber gas laser (FGL) based on gas filled hollow-core fibers (HCFs) is a laser source that combines the advantages of traditional gas and fiber lasers. According to the operating mechanism, FGLs can be divided into two categories: one is based on the stimulated Raman scattering (SRS) of gas molecules, and the other is based on population inversion realized by intrinsic absorption of gas molecules between the vibrational-rotational energy levels. The threshold power for population inversion is much lower than that for the SRS effect, making it easier to realize

continuous-wave (CW) laser emission. The laser wavelengths corresponding to the vibrational-rotational energy level transition of most gas molecules are in the mid-infrared waveband; thus, the FGLs based on population inversion provide a novel method for the mid-infrared fiber lasers, which have wide applicability in military, biomedicine, and atmospheric communication fields. In HCFs, most of the mode energy is concentrated in the hollow-core. The laser mode edge overlaps with a small amount of glass material in the cladding. As the field intensity in the glass material is at least one order of magnitude smaller than the peak field intensity in the core region, the theoretical damage threshold of HCFs is much higher than that of solid-core fibers, making HCFs ideal to operate at much higher power level. Meanwhile, the hollow-core structure can be filled with various gain gas media to achieve plenty of laser wavelengths, especially beyond 4 μ m, which is very difficult for traditional rare-earth-doped fiber lasers. Because of the intrinsic properties of gas molecular energy levels, laser output with narrow linewidth (several-hundred MHz) can also be obtained without additional linewidth control technology for FGLs, which has great advantages in maintaining laser linewidth at high power compared with lasers using solid-core fibers. Hence, FGLs provide a universal solution for the technical bottlenecks encountered by traditional mid-infrared fiber lasers in power enhancement and wavelength expansion.

Progress The advent of HCFs greatly promotes gas laser development, as it provides an ideal interaction environment between light and gas molecules. Since the first FGL based on population inversion was reported in 2011, it has obtained great attention because of its potential advantages in generating effective mid-infrared laser emission. In recent years, with the fast development of anti-resonant HCFs with low transmission loss in the mid-infrared waveband, FGLs operating at the mid-infrared waveband have been intensively studied recently. FGLs based on $C_2 H_2$ -, CO-, CO₂-, N₂O-, I₂-, HBr-, and HCN-filled HCFs have been reported, and most laser wavelengths are within the range of 3–5 μ m, except for the I₂ laser, which operates at the 1.3- μ m band.

In 2017, Xu et al. achieved the highest laser power using C_2H_2 -filled anti-resonant HCFs pumped by a narrow linewidth 1.5 μ m diode laser amplified by an erbium-doped fiber amplifier (Fig. 7). The highest continuous output power at 3.1 μ m is 1.12 W at 0.6 mbar pressure, and the slope efficiency is as high as approximately 33%. The HCF can effectively confine both the gases and the pump light within the core area over a distance much longer than the length of traditional gas cells, greatly reducing the pump threshold and improving the conversion efficiency. In 2017, Dadashzadeh et al. studied the output laser beam quality of FGLs based on $C_2 H_2$ -filled Kagome HCFs (Fig. 8). The experimental results show that the mid-infrared FGL has good beam quality as traditional fiber lasers, the best M^2 factor measured is less than 1.4, and the best value is approximately 1.15, showing the beam quality near the diffraction limit. In 2019, we achieved the 4.3 μ m CW FGLs based on CO₂-filled anti-resonant HCFs (Fig. 10), which is also the first CW fiber laser with output wavelength larger than 4 μ m. The pump source is a self-developed thulium-doped fiber amplifier seeded by a tunable narrow linewidth 2-µm diode laser. And the pump source is employed to pump a low transmission loss anti-resonant HCF with a length of 5 m, which is filled with low-pressure (several mbar) CO_2 . At the optimal pressure of 500 Pa, the laser threshold and the maximum output power are approximately 100 and 80 mW, respectively, with a laser slope efficiency of approximately 9.3%. In 2019, Aghbolagh et al. reported that a 45-cm long Kagome HCF filled with N₂O gas was pumped with a 1.517-µm-band OPO to produce a 4.6- μ m band laser with maximum output energy of 75 nJ under a pressure of 80 Torr (1 Torr \approx 133 Pa). However, the laser slope efficiency is only 3% because of high transmission loss of HCFs.

Conclusions and Prospect While fiber laser and gas laser technologies have reached a high level of maturity because of intense research over the last 50 years, the FGL is just in its infancy, and there are still many basic physical issues and key technologies that need in-depth investigation, such as theoretical FGL models especially at high-power, basic gas parameters' measurement, further reduction of HCFs' transmission loss, and efficient and high-power coupling technology between HCFs and solid-core fibers.

An all-fiber structure is one of the major development directions of FGLs in the future as it is an ideal choice in practical applications. However, presently, the pump light is usually coupled into HCFs by the spatial optical path coupling method. The spatial coupling structure is unstable and easily influenced by the external environment, leading to decreased coupling efficiency. To realize all-fiber FGLs, we need to resolve the following key issues: low-loss coupling between HCFs and solid-core fibers and fabrication of high-stability low-pressure all-fiber gas cells.

Another important direction for the development of mid-infrared FGLs is to achieve high-power output. Compared with the traditional solid-core fiber, most of the mode field energy in HCF is concentrated in the hollowcore region. The overlap area between the glass material and core area is very small. Therefore, theoretically, the damage threshold is much higher than that of the solid-core fiber, which is very potential for its high-power output. However, the highest power reported is only at the watt level. In the future, we will resolve several key issues to achieve higher power output, mainly including a high-power theoretical model, suitable narrow linewidth high-power pump source, and low-loss coupling of the high-power pump laser.

Obtaining more abundant laser wavelengths is also an important direction in the future. Compared with solidcore rare-earth-doped fiber, gas gain media are more convenient to be replaced in GFLs, and there are more choices. Suppose the HCFs' transmission bands are designed properly, with suitable gases and pump sources. In that case, we can obtain lots of laser wavelengths, especially in the mid-infrared band, which are not easy to achieve with traditional fiber lasers. In the future, if we use soft glass to manufacture HCFs, it is expected that far-infrared FGLs can be realized. On the other hand, FGLs also have certain advantages in realizing laser output in the visible and ultraviolet bands. Especially in the ultraviolet band, the photon darkening effect of HCFs is much weaker than that of solid-core fibers. The choice of gain media in the visible and ultraviolet bands is very rich, including common inert gases, various chlorides, and metal vapors. The pumping method can use optical pumping and electric excitation.

Key words lasers; infrared and far-infrared lasers; molecular gas lasers; hollow-core fibers

OCIS codes 140.3510; 140.3070; 140.3550; 140.4130